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Simple spontaneously active Hebbian learning model: Homeostasis of activity and connectivity,
and consequences for learning and epileptogenesis
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A spontaneously active neural system that is capable of continual learning should also be capable of
homeostasis of both firing rate and connectivity. Experimental evidence suggests that both types of homeostasis
exist, and that connectivity is maintained at a state that is optimal for information transmission and storage.
This state is referred to as the critical state. We present a simple stochastic computational Hebbian learning
model that incorporates both firing rate and critical homeostasis, and we explore its stability and connectivity
properties. We also examine the behavior of our model with a simulated seizure and with simulated acute
deafferentation. We argue that a neural system that is more highly connected than the critical state (i.e., one that
is “supercritical”) is epileptogenic. Based on our simulations, we predict that the postseizural and postdeaffer-
entation states should be supercritical and epileptogenic. Furthermore, interventions that boost spontaneous

activity should be protective against epileptogenesis.
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INTRODUCTION

The destabilizing effects of associative (Hebbian) learning
on neural systems have long been recognized: favorable syn-
apses become stronger, unfavorable synapses become
weaker, and there is a strong drive either towards ever esca-
lating, runaway activity or else global network silence [1-7].
Activity-dependent regulation of synaptic strengths and in-
trinsic membrane currents have been proposed as mecha-
nisms of maintaining homeostasis of neuronal activity [8].
Because of these homeostatic mechanisms, neuronal circuits
can behave similarly even when the cellular level constitu-
ents of neuronal behavior are different [9,10]. A particularly
striking example of a synaptic mechanism of homeostasis is
multiplicative postsynaptic up regulation of alpha-amino-3—
hydroxy-5—-methyl-4—isoxazolepropionic acid (AMPA) re-
ceptors as a compensatory mechanism for synaptic blockade
[11,12].

At present, studies of neural systems homeostasis prima-
rily focus on activity or firing rate homeostasis, whereby the
firing rate of a system is constrained to approach a target
level of activity [4,5,13,14]. However, although firing rate
homeostasis can maintain stability of activity, it does not
guarantee a neural system that is functionally useful. For
instance, a trivial solution for firing rate homeostasis is to cut
all neuronal connections, and then to adjust the spontaneous
(or intrinsic) firing rate for each neuron until the target firing
rate is reached. Such a neural system is incapable of associa-
tive learning, as every neuron is isolated from every other
neuron. Conversely, a connectivity pattern such that activa-
tion of one neuron reliably causes activation of all other neu-
rons is equally useless. Neurons that are capable of learning
must maintain an intermediate level of connectivity, even in
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the face of synaptic changes brought about by Hebbian learn-
ing and firing rate homeostasis. Therefore, we expect at least
one other homeostatic principle, one for homeostasis of con-
nectivity. Such a mechanism would prevent the neural sys-
tem from entering a state that is either underconnected or
overconnected.

Local field potential measurements have demonstrated
evidence for homeostasis of connectivity (reviewed in Refs.
[15,16]). In acute cortical slices and in cortical slices cul-
tured on 60 channel microelectrode arrays, activity consists
of periods of quiescence broken by bursts of activity of any
number of electrodes, which occur in clusters (or “ava-
lanches”) of all possible sizes [17-19]. A branching ratio o
can be defined as the number of electrodes that are excited
after any other single electrode is excited, averaged over time
and over all electrodes. This ratio fluctuates about unity for
hours at a time [17,18], with root mean square deviations of
about 5-25 % [70]. The condition o=1 represents the criti-
cal point. The return to criticality after fluctuations away
from criticality represents critical homeostasis.

The critical point so defined has a number of interesting
properties. Chief among them are that critical branching op-
timizes information throughput [17] and maximizes informa-
tion storage capacity [18,19]. A related property is that the
probability distribution function of avalanche sizes G4(n)
obeys a power law with G4(n)~n~' [17]. The power law
behavior suggests that the neural system has long range cor-
relations and is able to access the entire repertoire of possible
activation states. Such systems are also referred to as being
scale-free [20-23]. That the critical point is optimal for in-
formation throughput and storage capacity, and that critical
systems have scale-free access to the entire range of possible
activation patterns, are highly desirable properties for learn-
ing and information processing systems. Thus critical ho-
meostasis represents a homeostasis of connectivity optimized
for learning and information processing.

That a branching ratio of o=1 is optimal for information
storage and processing is intuitively plausible. If o> 1, then
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one might expect loss of information during transmission
due to its being “whited out” by accelerating network activ-
ity. If o<1, then information is lost due to its being damped
out. A branching ratio of o=1 is most likely to preserve
signal transmission in a faithful way. Similarly, for informa-
tion storage, one might think of information as being stored
in the patterns of network activation. If o<1, then these
patterns are limited to small cluster sizes, while if o> 1, then
only large clusters can be activated. At o=1, however, it is
possible to activate clusters of all sizes, from the smallest
sizes up to clusters the size of the entire network. It is at o
=1 that one has the largest repertory of patterns of activation,
and thus the largest information storage capacity.

The biomolecular mechanism for critical homeostasis is
not known. One might conjecture that such a mechanism
depends on the concentration of intracellular calcium, on
trophic factors such as brain derived neurotrophic factor, on
backpropagation of action potentials into the proximal den-
dritic tree, or on competition for cellular resources [2,5,14].
Interneuron interactions are another candidate. In any case,
we postulate that such a mechanism exists, particularly for
brain regions most involved in learning and high order infor-
mation processing. Real neural systems might conceivably
fluctuate about criticality, or might fluctuate about a point not
quite at criticality. It may also turn out that components of a
neural system may be tuned to a state far from criticality.
Nonetheless, at a large enough length scale, we hypothesize
that any neural system that is capable of continual learning
must be capable of some degree of critical homeostasis.

Here we investigate the properties of a simple model that
incorporates both firing rate homeostasis and critical homeo-
stasis. Our purpose is not to propose a model that is quanti-
tatively correct in every detail, but to investigate first
whether it is possible to construct such a model, and second
whether there are algorithmic consequences of imposing
both firing rate and critical homeostasis for this particular
model. In the Discussion section, we compare our model
with other recent homeostatic models.

METHODS

The model consists of a set of nodes labeled by i=1 to
N=64, each of which has an activation level A(i,7). The
activation level A(i,r) gives the probability that node i “fires”
at some point in the time interval (r—&t,t], where & is the
time step. Each node represents the local field average over
some number of neurons near one microelectrode. Each fir-
ing event represents a population spike consisting of the
near-simultaneous action potential discharge of a subpopula-
tion of nearby neurons. In practice, the firing events are taken
to be local field potential spikes that are more than three
standard deviations above the background amplitude. We
speak of nodal firing events to distinguish communal action
potential discharges from, for instance, lower amplitude
postsynaptic potentials. For the system of Haldeman and
Beggs [19], with microelectrode diameter of 0.02 mm and
interelectrode distance of 0.2 mm, the number of neurons
contributing to a nodal firing event may be as large as 1000.

The nodal local field potential dynamics that we model is
not simply related to the underlying neuronal dynamics.
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Neuronal dynamics consists of the action of ions, molecules,
macromolecular and cellular-level structures, while nodal
dynamics consists of the interaction of many principal neu-
rons and local interneurons in one field, with principal neu-
rons and interneurons in another distant field. In general, the
time scale of larger scale dynamics is slower than that of
smaller scale systems, because of the possibility of the emer-
gence of collective modes involving the mass action of many
neurons acting in phase with one another [24]. A similar
phenomenon is well known in solid state physics, where the
high frequencies of molecular vibrations and translational
motion are transformed, when these molecules are con-
densed into a solid, into low frequency as well as high fre-
quency bands. The low frequency bands correspond to col-
lective vibrations involving many molecules moving in
phase relative to each other, while the high frequency bands
correspond to intrinsic intramolecular motions. Thus the pos-
sibility that nodal time scales may be different from neuronal
time scales should not surprise us.

The theoretical bridging of microscopic with macroscopic
behavior is a monumental task, beyond the scope of this
paper [25-28]. Nonetheless, we expect nodal dynamics to
reflect neuronal dynamics in a qualitative way. Thus if neu-
ronal dynamics exhibits firing rate homeostasis, then nodal
firing rates must also exhibit firing rate homeostasis. Simi-
larly, Hebbian learning at the neuronal level must also be
reflected in correlations in nodal dynamics. We will also as-
sume that every node is equivalent. By equivalent, we mean
that every node has the same steady state firing rate and the
same steady state branching ratio. Heterogeneous systems
may be generalized from what follows.

The brain is immensely complex and structured, and this
structure certainly contributes to its powerful information
processing capabilities. Understanding exactly how the de-
tailed circuitry of the brain accomplishes its tasks is an im-
portant goal and will require more electrophysiological ex-
periments at the synaptic and circuit levels, as well as
detailed, biophysically realistic compartmental models.
Clearly, this is an ongoing task. In the mean time, we believe
that a statistical approach to optimality can yield some in-
sights as to how the brain operates. The constraints revealed
by our analysis are only meant to apply to the neocortex at
some coarse-grained level, and may or may not be applicable
at the microscopic circuit level. By focusing our attention on
macroscopic behavior, we do not imply that microscopic and
mesoscopic level complexities are irrelevant. The simplifica-
tions that we make help us to identify certain properties that
we believe may be general to spontaneously active neural
systems. Some generalizations of our model are possible and
desirable, depending on the questions one wishes to answer.
We discuss this issue further in the Discussion section. Ex-
amples of other collective or “lumped” neural system models
exist [29-34].

To continue, let F(i;7)=1 mean that node i fired at some
point in the time interval (1— &t,¢], and F(i;1)=0 mean that it
was quiescent. Let 7, be the target average time interval
between firings, so that 1/ 7, is the target average firing rate.
The value of F(i;f) can only be zero or one, never anything
in-between. However, if (- --) represents a time average over
a time period that is much longer than 7,, then one expects
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that (F(i;7)) becomes approximately equal to (A(i;7)), which
itself approaches ot/ 7.

Let P(i,j;f) be the conditional probability that firing at
node j in the time interval (r— 8¢, 1] causes firing at node i in
the next time interval (¢,7+ &¢], with P(i,i;t)=0. We refer to
the P(i,j;t)’s as the stimulated firing probabilities, or
equivalently as the connection strengths. Let S(i;7) be the
probability of spontaneous firing at node i in the time inter-
val (z,t+6t]. This probability does not depend on whether
any other node has recently fired. The total probability that
node i will fire in the time interval (z,7+ t] is then given by
one minus the probability that it will not fire, i.e.,

N
Alist+ ) =1-[1=-SG0T[1 - PG.js0F(G:0]. (1)
j=1

Here I1; signifies a product over all j from 1 to the total
number of nodes, N. In deriving this equation, we have as-
sumed that the connection strengths P(i,;;f) are mutually
independent, so that the probability of multiple mutually in-
dependent processes occurring at the same time is given by
the product of the individual probabilities. Multinodal events
are not ignored but are approximated by the product of one-
and two-nodal probabilities. More sophisticated models
would have to take into account simultaneous multinodal
interdependence, including terms of the form P(i,j,k;t) for
simultaneous interactions between three nodes, for instance.
We leave these higher order correction terms for future stud-
ies. They may prove important but are much more complex
to analyze.

For convenience, define a relative firing rate f(i;r)
=(F(i;1)),m/ &, where (---), represents a time average over
the prior time interval 7, with 7,5 dr. We take 7,=7, for
simplicity. Thus firing rate homeostasis requires f(i;t) to
hover about unity, and the fluctuation Af(i;r)=f(i;1)—1 to
fluctuate about zero. Physiologically, 7, is the time scale on
which each node, through regulatory feedback mechanisms,
perceives what its time-averaged firing rate is, relative to its
target firing rate. This time scale has to be on the time scale
of 7, or longer, because a given feedback time cannot yield
an average firing interval longer than itself. We take 7,=7,
primarily for demonstration purposes, but also note that this
time scale is the shortest time scale at which a node can
compare actual to target firing rates. This choice thus opti-
mizes nodal responsiveness to fluctuations away from target
nodal behavior. In what follows we found it most challeng-
ing to achieve stable solutions with smaller values of 7,;
firing rate and critical homeostasis are easier to achieve for
larger values of 7,, presumably because fluctuations about
the steady state are smoothed out.

Nodal connectivity can be defined in terms of an input
ratio 7(i;t) as follows:

N
nist) = 2 P(i,js1). 2)
j=1

Here X; signifies a sum over all j from 1 to the total number
of nodes, N. Analogously, the branching ratio for node i can
be defined as
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N
olist) = 2, P(j,ist). (3)
j=1

The input ratio is a measure of excitatory input into each
node. The branching ratio is a measure of excitatory output
from each node. The input ratio averaged over all nodes is
equal to the corresponding average of the branching ratio.
We define critical homeostasis in terms of homeostasis of the
input ratio rather than of the branching ratio, but either
method will work. Our choice is influenced by the fact that
the input ratio is a postsynaptic attribute, in the same spirit as
the postsynaptic scaling mechanism found by Turrigiano and
co-workers [12,35]. Let fluctuations of the input ratio about
the target input ratio be An(i;t)=7(i;1)—1. Let the physical
distance between nodes i and j be D(i,j).

We next need equations governing the time evolution of
S(i;r) and P(i,j;r). We wish to scale S(i;t) and P(i,j;t)
down or up depending on whether each node is firing too
frequently or too infrequently, and whether connectivity to
that node is too high or too low. Our model for dynamical
homeostasis then consists of the equations

L5650 =~ Aflisn) + kpd g0 lSG0, ()

P
EP(i,j;t) = — [k Af(is1) + koA iz 1) + kpD(i, ) 1P(i, j;1).

(5)

The rate constants ky;, ko, kpj, ko set the time scales for
scaling of S(i;¢) and P(i,j;f) in response to fluctuations of
the relative firing rate and input ratio. For convenience we
can define a matrix K, where the elements of the matrix are
the rate constants k; above. The rate constant kp controls a
distance-dependent cost factor. Larger values of k, increase
the cost of maintaining a connection between two nodes over
a period of time, which is greater for nodes that are far apart.

We do not claim that Eqs. (4) and (5) represent the only
possible algorithm for regulating the spontaneous and stimu-
lated firing probabilities, and we do not expect these equa-
tions to hold for extreme conditions, such as when all con-
nections are severed. We adopt these equations only because
they are particularly simple and provide a convenient starting
point.

Hebbian learning can be incorporated by increasing
P(i,j;t) by a factor 1+Cy if firing of node j in the time
interval (r—ér,t] is followed by firing of node i in the next
time interval (z,2+ 5t]. We refer to Cp as the Hebbian learn-
ing factor. This type of Hebbian learning models long-term
potentiation (LTP). Long-term depression (LTD) can be
modeled by reducing P(i,j;t) by a factor of 1—Cy if firing
of node j in the time interval (z—4&t,7] is not followed by
firing of node i in the succeeding time step. The following
equations then hold:

LTP: P(i,j;t+ 61) = P(i,j;0)[1 + CyF (i;0)F(j;1 = o)),
(6)
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TABLE 1. Numerical tests of stability. List of all choices k;; such that the relative firing rates and input
ratios converged to unity. We allowed each k;; and the Hebbian learning factor Cy to take on the values of 0,
2X 1073, and 0.01 in all possible permutations. A time step of dt=4 ms was taken, for a total of 50 million
time steps for each set of parameters. Other details are as described in the Methods section. The states that
converged are denoted with a “y”. All data refer to LTP results except the column marked C;, which denotes

identical results for both LTP, LTD, and STDP.

ki ki ky o Cy=0 Cy=2X1075 C,=0.01
2X 1073 0 0 0.01 y y y
2X 1073 0 2X107° 2X107° y y

2X107° 0 2x 1073 0.01 y y y
2X 107 0 0.01 0.01 y y y
2x107° 2X 107 0 0.01 y y y
2X107° 2X107° 2X107° 0.01 y y y
2X 107 0.01 0 0.01 y y

LTD: P(i,j;t+ 6t) = P(i,j;0{1 = Cy[1 = F(i;1)]
XF(j;t— o)} (7)

Spike-timing-dependent plasticity (STDP) can be modeled
by combining the criteria for both LTP and LTD.

Equations (4) and (5) can be easily integrated numerically.
Because S(i;7) and P(i,j;t) represent probabilities, their val-
ues are reset to one if their calculated values ever exceed
one. Every node is initially allowed to be connected to every
other. The total number of nodes is taken to be N=64, with 8
rows of 8 nodes in a square lattice with lattice constant a
(that is, a is the distance from one node to its nearest neigh-
bor). The time step is taken to be St=4 ms. A refractory
period of 20 ms is imposed after every firing at each node.
The target firing interval is 7,=6.25 s. These parameters are
chosen to be in agreement with experiment [17,18].

RESULTS

Let us first study the stability properties of the dynamical
homeostatic equations, Egs. (4) and (5). We have performed
extensive computer simulations, allowing the rate constants
k;; and the Hebbian learning factor Cy to take on all possible
permutations of the values of 0, 2 X 1075 and 0.01, using
LTP, LTD, and STDP versions of Hebbian learning. There
are 3°=243 possible permutations for each type of Hebbian
learning. If convergence is defined numerically to be such
that (f(i;7)) and (#(i;r)) both approach unity to within 5%
within a total simulation time of 50 million time steps, then
the only states that converge are those listed in Table I. By
visual inspection, it is generally clear which simulations will
converge by 3-5 million time steps, but we continue every
simulation for at least 50 million time steps and occasionally
up to 300 million time steps. Note that most choices for k;;
and Cy resulted in unstable systems. To summarize Table I, it
appears that convergence requires the following necessary
conditions to be met: (1) the spontaneous firing probability
must be greater than zero, (2) scaling of the spontaneous
firing probability must be dominated by firing rate homeo-
stasis (the k;, term), (3) scaling of the connection strengths
must be dominated by critical homeostasis (the k5, term), (4)

“off-diagonal” terms are permissible as long as kjky
> kyoky;, (5) the time scale for critical homeostasis is at least
as fast as Hebbian learning (k,, = Cy), (6) critical homeosta-
sis primarily affects scaling of connection strengths, not fir-
ing rate (ky,>k,), and (7) critical homeostasis occurs on a
faster time scale than firing rate homeostasis (k,,>k;; con-
verges fastest but sometimes k,,=k;; may also converge).

We were not able to derive these stability and conver-
gence criteria analytically for the general case. However, if
we assume that simultaneous multinodal activations are rare
(on average there are 1562 time steps between each firing
event for each node), that this solution does not depend on
initial conditions for F(i;z) or A(i;?) (so that the steady state
is stable to perturbations), that every node has the same
steady-state values for firing rate and input ratio (the system
is homogeneous), that fluctuations in the zero-time time cor-
relation between the connection strength and activity are
small (i.e., it takes finite time for connection strengths to be
adjusted up or down), and that k=0 (no distance-dependent
connectivity cost factor), then we show in the Appendix that
convergence to steady state requires that S(i;7)>0 and
det(K) >0, where det(K)=%k, ky—k;k,;. These two require-
ments are equivalent to the stability criteria (1)—(4) above.
Furthermore, the only stable steady state under these condi-
tions is that for which firing rate and critical homeostasis are
achieved, i.e., where (f(i;*))=(n(i;>))=1.

The assumptions listed above are all reasonable for our
system except for the assumption that k,=0. Realistic bio-
logical systems should have a nonzero distance-dependent
connectivity cost factor. However, we will show later in this
section that simulation results depend only weakly on this
cost factor as long as it is smaller than some particular value.
We take up this issue again later in this section; for now, we
ignore the term in k.

It is instructive to look at sample states that did not con-
verge, and to compare them to states that do converge. In
Fig. 1, we show that firing rate homeostasis by itself cannot
guarantee critical homeostasis (k;; and k,; >0, k;,=k»=0),
since det(K)=0 in this case. This result is not unexpected,
since critical homeostasis represents a constraint distinct
from firing rate homeostasis, and there is no reason to expect
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FIG. 1. Relative firing rate f and input ratio 7 as a function of
time, semilogarithmic scale. Each time step is 4 ms. A total of 50
million time steps are taken for each simulation but only the first 20
million time steps are shown. These curves show that firing rate
homeostasis by itself (k;; and kp; >0, kj,=k»,=0) cannot guarantee
critical homeostasis. With k;;=2X 1073 and k,;=0.01, the average
relative firing rate converges to f=1 but the average input ratio
converges to 7=9.8. With k;;=0.01 and k,;=2 X 107, f converges
to one but 7 converges to 57.2. With k;;=0.01 and k,;=0.01, f
converges to one but 7 converges to 6.5 X 107+, All values are av-
eraged over the prior one hour of data and over all N=64 nodes.
The Hebbian learning factor in these calculations is Cy=0.01.

that firing rate homeostasis alone should guarantee critical
homeostasis.

In Fig. 2, we show that states with k;, and k,; >0, and
ky 1=k =0 are also unstable, because det(K) <0 in this case.
If the initial S(i;z)’s are too low, these states tend to fall into
global silence with zero firing rates and high input ratios
7(i) = N. If the initial S(i;7)’s are too high, these states tend
to approach tonic hyperactivity with low input ratios, (i)
< 1. When det(K) <0, there appears to be no mechanism for
the S(i;)’s to find an optimal value such that firing rates and
input ratios are stable about their target values.

In Fig. 3, we show that when det(K) >0, stable states are
found that maintain relative firing rates and input ratios that
fluctuate about unity. Interestingly, not every state with
det(K)>0 converges to the correct target values. These
states appear to depend on initial conditions. It appears from
our exploration of numerical examples that additional criteria
for convergence to target values are that ky,=Cy, that k,,
>k, and that ky,=k;; (see Table I). Although we were
unable to prove this analytically, it may be that these addi-
tional criteria remove the dependence on initial conditions.

The numerical convergence condition k,, = Cy states that
scaling of the connection strengths must not be much slower
than the time scale for Hebbian learning, because otherwise
Hebbian learning would dominate critical homeostasis and
make critical homeostasis impossible. If the condition k,,
=(Cy were not satisfied, then repeated Hebbian learning
would eventually destabilize the network, causing either net-
work overconnectivity or underconnectivity. Conversely, if
k,,> Cy, then the neural network would have stable connec-
tivity but learning would be very slow. Optimal learning with
stable connectivity is achieved when k,,=~Cy. A caveat,
however, is that it is acceptable to allow Cp to be slightly
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FIG. 2. Relative firing rate f and input ratio z as a function of
time, log-log scale. Each time step is 4 ms, Cy=0.01. These two
examples show that firing rate homeostasis scaling of connection
strengths (k,;=0.01, k»,=0) and critical homeostasis scaling of
spontaneous firing probabilities (k;,=2 X 107, k;;=0) result in an
unstable system. In example (a), the initial S(i;0)’s are too small to
maintain firing rates and input ratios at unity. When the relative
firing rates eventually drop below unity, the connection strengths
P(i,j;t) are scaled up and the input ratios rise. As the input ratios
rise, the spontaneous firing probabilities are scaled down further,
which causes the relative firing rates to drop even more, perpetuat-
ing a cycle such that the system eventually becomes silent (f=0)
despite maximal input ratios [ (i) =N, where N is the total number
of nodes]. Varying the relative magnitudes of k;, and k,; does not
improve stability. In example (b), the initial S(i;0)’s are too large,
and the opposite situation arises, where a cycle is entered such that
the spontaneous firing probabilities rise as the input ratios drop.
This system then enters tonic hyperactivity with minimal
connectivity.

larger than k,, for a certain period of time (i.e., while the
animal is awake during which speed of learning is advanta-
geous) but then turning Cy down or even off for another
period of time (i.e., when the animal sleeps), to allow critical
homeostasis to catch up to learning (compare Refs. [36,37]).

Why k,, must be greater than &, for convergence to occur
is not obvious to us. However, an evolutionarily favorable
consequence of this criterion is that the dynamics of changes
in connectivity is then unconstrained by firing rate homeo-
stasis. That is, if firing rate homeostasis enters on a longer
time scale than critical homeostasis, and if the time scale for
critical homeostasis and Hebbian learning are similar, then
firing rate homeostasis is less likely to interfere with the
speed at which an animal can learn.
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FIG. 3. Relative firing rate f and input ratio # as a function of
time, linear scale. Time step is 4 ms. These examples show that the
convergence criterion det(K) >0 does not guarantee convergence to
the target asymptotic firing rate and input ratio. With k;;=2
X 1073, ky,=0, and ky=k,y=Cy=0.01, both f and % converge to
unity. However, with k;;=0.01, k;,=0, and k,;=kyy=Cp=2X 107,
S converges to 1.16 while 7 converges to 0.84, even through det(K)
is identical in the two cases. All values are averaged over the prior
one hour and over all N=64 nodes.

The stability of our model to fluctuations in the firing rate
and branching ratio seems to depend strongly on the behav-
ior of the spontaneous firing probability S(i;7), even though
steady-state values of S(i;7) are very small. In our examples,
the average S(i;f) is on the order of 1 X 1075-8 X 10™. With
a time step of or=4 ms and target firing interval of 7
=0.25 s, the proportion of total firing due to spontaneous
firing then comes out to 2—12 %. That is, even though most
of the activity of our system is due to connectivity-related
activity, nonetheless nonzero spontaneous activity is neces-
sary for system stability.

We do not have experimental values for K, Cy, or kp.
These parameters will depend on the size of the electrodes
and the number of neurons each electrode overlies. As dis-
cussed earlier, these parameters do not have a simple rela-
tionship to analogous neuronal properties. For instance, the
nodal spontaneous firing probability will depend on both the
local neuronal spontaneous firing probabilities and also on
the strengths of local neuronal connectivities, while nodal
connection strengths will depend on longer-distance connec-
tions between neurons underlying different microelectrodes.
Further, the time scales of neuronal dynamics will not trans-
late directly to nodal time scales. Nonetheless, we can make
a few statements about their relative magnitudes. First, the
rate constant k,, should be on the same order of magnitude
as the Hebbian learning factor Cy, as discussed above, in
order that neither dominates the other. Second, all of these
time scales must be longer than the simulation time step; if
this were not true, then we would need to choose a smaller
simulation time step. In effect, this means all the k;;’s must
be much smaller than one, in units of 1/46¢. Third, we expect
the rate constant kq; to be much slower than k,,, so that firing
rate homeostasis infringes as little as possible on the ability
of the neural system to react quickly to the environment. We
found above that such a choice also appears to be necessary
for the firing rate and input ratio to converge to the correct
values.
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To demonstrate the effect of varying kp, let k=2
X 1075, ky,=0, and ky=k,,=Cy=0.01. We integrated Egs.
(4) and (5) using kj, equal to 0, 1075, 107, 107#, 1073, and
1072, with kj, in units of 1/(adt), where a is the lattice con-
stant, 6t=4 ms is the time step, and a total of 50 million time
steps are taken per simulation. For the representative case of
kp=1073, the average input ratio comes out to 7=0.99 with
standard deviation 0.22, and the relative firing rate is 1.01
with standard deviation 0.26.

When kj is between 1073 and 1073, the distribution of
avalanche sizes G 4(n) as a function of avalanche size n [Fig.
4(a)] is suggestive of a power law with an exponent close to
—1.5. At smaller values of kj, the distribution G,(n) is still
suggestive of a power law but there is an upturn at large
avalanche sizes with greater than expected frequency of
these larger avalanche sizes. Values of kj, larger than 1073
destroy the power law dependence, replacing it by a decreas-
ing exponential with a cutoff.

In Fig. 4(b), we show the relative strength of connectivity
as a function of distance. As kp increases, the connectivity
strength drops off very quickly as a function of distance. By
kp= 1073, next-nearest neighbor connectivities are 5 orders of
magnitude weaker than nearest-neighbor interactions, and
yet the corresponding plot in Fig. 4(a) shows that avalanche
sizes can still span almost the entire network of 64 nodes.
However, by kp= 1072, there are no connections beyond
nearest neighbors, and in this case, Fig. 4(a) shows that ava-
lanche sizes are sharply curtailed, to a maximal size of less
than 10 nodes. These results suggest that being able to acti-
vate large avalanche sizes requires at least some connections
beyond nearest neighbors.

The rate constant kj is related to a length scale L
=1/(kp7p). This length scale is that at which the increased
cost of maintaining a long-distance connection becomes ap-
parent on the time scale of the target firing rate. When k&, is
between 107 and 1073, L is between 64 and 0.64, respec-
tively, in units of the lattice constant a. This range corre-
sponds to the length scales of our 8 X8 system. Thus the
results of Figs. 4(a) and 4(b) and suggest that as long as L
=a, connectivities extend beyond nearest neighbors and ac-
tivation patterns can spread to cover the entire array.

Figure 4(c) shows the averaged values of the input ratio,
relative firing rate, and spontaneous firing probability as a
function of kj. As long as k<1072, it is possible to main-
tain the average input ratio very near unity. That is, critical
homeostasis is not very sensitive to the distance-dependent
cost factor, until the cost of maintaining connectivity is so
high that there are no connections at all beyond nearest
neighbors. At larger values of kp, it is no longer possible to
maintain critical homeostasis, although firing rate homeosta-
sis is still maintained.

The weak dependence of critical homeostasis on kj, for
k<1072 allowed us to ignore kp, in the stability and conver-
gence analysis performed in the Appendix.

Figure 4(d) shows the distribution of connection strengths
as a function of connection strength P. As long as kp
<1072, the general shape of this distribution is of a tall peak
near P=0 with a long, flat tail or a smooth hump extending
out to the maximal strength of P=1. For the representative
plot of k=107, about 97% of connection strengths are less
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FIG. 4. Dependence on kj. Example with k;;=2X 107, k;,=0,
ky1=kyy=Cy=0.01, time step of 4 ms and total of 50 million time
steps. (a) Log-log plot of the distribution of avalanche sizes G,(n)
vs avalanche size n. The solid line is a power law with an exponent
of —1.5 shown for reference. (b) Semilogarithmic plot of relative
connectivity vs distance, calculated by adding all P(i,;;1)’s at each
distance and normalizing area under the curve to unity. Distances
are in units of the lattice constant a, rounded to the nearest integral
value. (c) Log-log plot of averaged spontaneous firing probability,
input ratio, and relative firing rate as a function of kp. (d) Semi-
logarithmic plot of distribution of connection strengths P(i,j;) vs
connection strength, with total area under the curve normalized to
unity.
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than P=0.001. Thus the connectivity pattern, for k<1072,
is generally sparse.

Connectivity that is sparse and consists of mostly nearest-
neighbor connections is less costly for biological neural sys-
tems to maintain. When such networks are nonetheless ca-
pable of activating large-scale clusters spanning almost the
entire network, one is able to reduce metabolic cost (by re-
taining fewer long-distance connections) without giving up
much information processing power. This favorable situation
is present for our examples with k;, <1072, and is thus rela-
tively insensitive to kp, as long as the length scale require-
ment L=a is satisfied. Such a situation is suggestive of so-
called small world connectivity [20-23]. Small world
connectivity has been shown to have precisely this property
of being able to maintain global connectivity even with
mostly local connections. Furthermore, the ability to main-
tain global connectivity is relatively insensitive to the per-
centage of long-distance connections, until this percentage is
very nearly zero. This relative insensitivity to the percentage
of long-distance connections is also demonstrated by our
model qualitatively [Figs. 4(a) and 4(b)].

Finally, in addition to the specific permutations in the val-
ues of the k;;’s above, we also randomly sampled other val-
ues of k;;. We did not find any exceptions to the stability and
convergence criteria discussed above. What appeared most
important are not the absolute values of the k;;’s, but rather
their relative values. The absolute values control the absolute
time scales of the dynamics, but the relative values are key
for stability and convergence.

DISCUSSION

We have explored the requirements of a simple biologi-
cally plausible neural system model that incorporates (1)
spontaneous nodal firing activity, (2) stimulated nodal firing
activity, (3) firing rate homeostasis, (4) critical homeostasis,
(5) Hebbian learning, and (6) a distance-dependent connec-
tivity cost function. Our goals were to investigate first
whether it is possible to construct such a model, and second
whether there are algorithmic consequences of imposing
both firing rate and critical homeostasis for this particular
model. Our primary findings are that we were indeed able to
construct such a model, and we found that not every possible
set of parameters for our model is stable.

In particular, within the limits of our simple model, we
found from extensive computer simulations that stability and
convergence of the system to target firing rates and connec-
tivity require that (1) the spontaneous firing probability must
be greater than zero, (2) scaling of the spontaneous firing
probability must be dominated by firing rate homeostasis
(the k;, term), (3) scaling of the connection strengths must be
dominated by critical homeostasis (the k,, term), (4) “off-
diagonal” terms are permissible as long as k k> kioks;, (5)
the time scale for critical homeostasis is at least as fast as
Hebbian learning (k,, = Cp), (6) critical homeostasis prima-
rily affects scaling of connection strengths, not firing rate
(ky»>ki,), and (7) critical homeostasis occurs on a faster
time scale than firing rate homeostasis (ky, =k,;). The first
four stability conditions can also be derived analytically, un-

041909-7



HSU et al.

der certain circumstances discussed as above and in the Ap-
pendix.

A secondary finding of our simulations is that by making
only the simple, biologically plausible assumptions above,
the resulting model neural system is able to activate cluster
or avalanche sizes ranging from the smallest to the largest
possible sizes (the system is scale-free), and this property is
maintained even when most connection strengths are very
weak and most are very short distance (i.e., when kj,>0).
This finding suggests that neural systems that satisfy our
basic assumptions have available to them near-maximal
computational power at low metabolic cost, over a fairly
wide range of parameters.

We do not know if our conclusions are generalizable to
other specific neural system models, nor whether real bio-
logical systems have the same stability and convergence re-
quirements. Nonetheless, our results suggest that real bio-
logical systems may have similar constraints, which must be
satisfied in order for these systems to function optimally. If
such constraints exist, then they will be important to discover
and characterize, because real life failure to satisfy these con-
straints will represent disease states. For instance, neural tis-
sue that is persistently underconnected will have difficulty
activating large-scale circuits, and may then result in learn-
ing disorders and mental retardation. Understanding the na-
ture of these constraints may also help us to manipulate them
in times of physiological stress, to protect patients after a
brain insult.

As an example, we simulated a seizure on our system by
forcing 12 out of 64 nodes to fire at rates far above the target
rates for a period of time (Fig. 5). From simulations, we
found that, during a seizure, hyperactive firing at one set of
nodes drives the spontaneous firing probability of all system
nodes to lower values [Fig. 5(a)]. The connectivities are also
driven to lower values. At the end of the seizure, both the
spontaneous firing probabilities and the connectivities begin
to recover, but the connectivities recover faster because kj,
>ky;. If it happens that k,,> k,;, then the connectivity will
actually overshoot for a period of time, and the postseizural
state will be supercritical even though activity is depressed
[Figs. 5(b) and 5(c)]. In our example, the postseizural super-
critical state lasts on the order of 50 million time steps (about
55 h). We conjecture that this postseizural supercritical state
plays a role in epileptogenesis by increasing the chance of
creating a large-scale hypersynchronous pattern of activa-
tion. Such a pattern, if repeated often enough, may be
“burned into memory” and thus may be reactivated at some
unpredictable time in the future. The possibility of reactivat-
ing a spatially extended hypersynchronous state is a prereq-
uisite of epilepsy, and is a separate condition distinct from
the more traditional concept of increased neuronal hyperex-
citability. If the postseizural state is indeed supercritical and
epileptogenic, then we suggest that postseizural interventions
that boost spontaneous firing, for example, by high fre-
quency subthreshold electrical stimulation, may relieve the
drive towards supercriticality and may be protective against
epileptogenesis. Spontaneous activity and connectivity-
dependent activity have opposite effects on epileptogenesis,
and thus it is important to distinguish between these two
types of activity.
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FIG. 5. The spontaneous firing probability S, relative firing rate
f, and input ratio 7 as a function of time. A simulated seizure occurs
between time steps 1.25X 10® and 1.5 X 10® during which the acti-
vation levels A(i;7) of 12 nodes were set to 0.8. In all examples,
k12=0, ky;=ky;=Cy=0.01, and the time step is 4 ms. (a) The spon-
taneous firing probability averaged over all nodes S declines with
seizure onset and slowly recovers after the seizure ends. The rate of
recovery is slower for smaller values of k;;. (b) The relative firing
rate f is elevated during the seizure and becomes depressed for a
time after a seizure ends, more prominently so for smaller values of
ky;. Note the semilogarithmic scale. (c) The average input ratio 7 is
depressed during a seizure and becomes elevated (i.e., the system is
supercritical) for a time after a seizure. For k;;=10"% and k,
=1077, the input ratio remains supercritical for about 50 million
time steps (55 h).

Another example of a disease state is when an area of
cortex is suddenly cut off from its neighbors, or “deafferen-
tated” [38]. Deafferentation is a model for traumatic brain
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FIG. 6. The spontaneous firing probability S, relative firing rate
f, and input ratio 7 as a function of time. Simulated acute deaffer-
entation occurs at time step 1 X 103, at which time a system of 100
nodes is suddenly reduced to 10 nodes. Parameters are k;;=107°,
k12=0, ky;=ky;=Cp=0.01, and the time step is 4 ms. (a) The spon-
taneous firing probability S as a function of time rises to a new
steady state after acute deafferentation. (b) The relative firing rate f
declines with acute deafferentation and does not recover to steady-
state baseline until S has reached its new baseline. The input ratio »
compensates for the depressed relative firing rate by rising to su-
percritical levels and remaining there until S and f have both
reached their new steady-state levels. The supercritical state in this
example lasts for 8 million time steps (9 h).

injury. Immediately after deafferentation, neuronal activity
drops precipitously. Epileptiform discharges then later ap-
pear. Why does this happen? Assuming that the target firing
interval 7, is the same in intact brain as in deafferentated
brain, our model predicts that the baseline spontaneous firing
probability needed to maintain the target firing rate should be
smaller for intact brain than for deafferentated brain [Fig.
6(a)]. The reason is that spontaneous activity can propagate
to other nodes, and hence, if there are more nodes, lower
spontaneous activity is needed to maintain the same level of
activity. With acute deafferentation the firing rate therefore
immediately drops [Fig. 6(b)]. In response to the drop in
firing rate, connectivities increase to supercritical levels and
remain supercritical until the spontaneous firing probability
reaches its new steady-state value [Fig. 6(b)]. In our ex-
ample, the postdeafferentation supercritical state lasts for
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9 h. Again, we hypothesize that this period of supercriticality
is one during which epileptogenesis may occur, and that in-
terventions that either boost spontaneous firing or that inhibit
connectivity-dependent firing will decrease the tendency to-
wards supercriticality, and thus be protective against epilep-
togenesis. In addition, if for some reason there is a ceiling on
maximal spontaneous firing probabilities, such that the deaf-
ferentated nodes are blocked from reaching these critical
spontaneous firing rates, then it is possible to produce an
indefinitely persistent supercritical state.

In experimental models of neocortical post-traumatic
brain injury, one sees immediate focal slowing of electrical
activity with suppression of fast oscillations. After a period
of weeks, one then sees increased neuronal hyperexcitability,
decreased efficacy of inhibitory systems, and pathological
recurrent axonal sprouting of layer V principal neurons with
increased functional connectivity [39-44]. Neuronal hyper-
excitability can be the result of either increased spontaneous
activity or increased connectivity. To distinguish between
these two etiologies would require network-level multielec-
trode correlation analysis, which to our knowledge has not
been done. Axonal sprouting may be interpreted as an in-
creased drive towards greater connectivity, in agreement with
our prediction, but if the length scale at which axonal sprout-
ing occurs is much smaller than the size of a node, then
axonal sprouting may result in activity that is interpreted as
increased spontaneous nodal activity. It would be interesting
in such systems to distinguish spontaneous from
connectivity-related activity, as we predict that there should
be a period of time during post-traumatic epileptogenesis
where one finds increased connectivity-related activity in the
presence of depressed spontaneous activity. Also of interest
is the finding that there appears to be a “critical period” in
post-traumatic epilepsy, where suppression of neuronal activ-
ity with focal application of tetrodotoxin, if applied for three
days starting no later than 3 days after injury, results in sup-
pression of epileptogenesis [43,44]. We hypothesize that
such suppression allows the drive towards increased sponta-
neous firing enough time to rise to a new steady state, while
preventing connectivity-dependent firing from reaching such
levels as to burn into memory spatially extended hypersyn-
chronous patterns of activation. It would be interesting to
monitor electrical activity during the time period of tetrodot-
oxin application, to see if there is indeed suppression of
connectivity-dependent activity.

Latham et al. [45] have also studied the role of spontane-
ous activity in neural networks. This model is somewhat dif-
ferent from ours, involving a heterogeneous population of
cells, which includes a fraction of endogeneously active
cells. They find that increasing the fraction of endogenously
active cells produces firing patterns that are more regular and
of lower frequencies. Systems with too few endogeneously
active cells are either silent or fire in bursts of high fre-
quency. Our system is homogeneous and describes not indi-
vidual cells but groups of cells, each group represented by a
node. In our model, when the spontaneous firing probabili-
ties S(i;1) are too low for a prolonged period, for whatever
reason, the firing rates also become too low. In partial com-
pensation, the connection strengths P(i,;;7) then rise to su-
percritical levels. What tends to happen in this situation is

041909-9



HSU et al.

that the baseline firing rate is still too low, but when there is
spontaneous activity, that activity quickly spreads to many
nodes, in a burst, because the connectivity is supercritical.
During the period of the activity burst, the firing frequency
would appear very high. If the S(i;7)’s are allowed to recover
(that is, as they slowly increase), then the P(i,j;)’s are
scaled back down. When the connectivity returns to critical
or subcritical levels, then spontaneous firing of a node is less
likely to spread quickly to a large number of other nodes.
The firing pattern then becomes more regular. If we take our
spontaneous firing probability S(i;#) to be analogous to the
fraction of endogeneously active cells of Latham er al. then
our conclusions are concordant with theirs.

Regarding spontaneous firing, we also found that sponta-
neous activity accounts for only 2—12 % of total activity, and
yet stability about target firing rate and connectivity requires
that spontaneous activity must be greater than zero. Perhaps
this requirement for stability is the reason why the brains of
higher animals (i.e., those capable of learning and adapting
to the environment) are never entirely quiet, even at rest and
even in sleep.

Two of us have previously attempted to construct a model
exhibiting both firing rate homeostasis and critical connec-
tivity, but assuming only a mechanism for firing rate homeo-
stasis [46]. This earlier model is the same as the model pre-
sented here but with no homeostatic mechanism for
connectivity (i.e., k»; and k,, were both equal to zero). In
addition, the earlier model was not capable of Hebbian learn-
ing (Cy=0). It was found that as long as the rate constant for
scaling of the spontaneous firing probability is smaller than
that for the connection strength (k;; <k,;), then critical con-
nectivity was approximately maintained, with best results for
ky1/k,;=0.5. However, when Hebbian learning was turned
back on (Cy>0), no stable state that converged on target
firing rates and critical connectivity could be found despite
extensive exploration of parameter space [71]. It was the
failure to find such a state, when Hebbian learning was
turned on, that led us to consider whether homeostasis of
connectivity may be a homeostatic principle in its own right,
distinct from that of firing rate homeostasis.

Abbott and Rohrkemper [47] have proposed an elegant
“growth” model that essentially allowed connectivity to
grow or shrink so as to achieve firing rate homeostasis.
Power-law behaviors were then seen suggestive of critical
connectivity. That is, critical behavior was seen in this model
assuming only firing rate homeostasis, without having to in-
voke critical homeostasis explicitly. As in our own earlier
effort, however, this model does not incorporate Hebbian
learning. It would be interesting to know whether this growth
model remains capable of critical behavior after Hebbian
learning is turned on.

Sullivan and de Sa [48] proposed a simple model capable
of both Hebbian learning and firing rate homeostasis. How-
ever, they did not investigate whether their model exhibits
critical connectivity, and their model is not meant to be spon-
taneously active. The model of Yeung er al. [49] incorporat-
ing a calcium-dependent plasticity is appealing for its under-
lying realism, but it similarly does not investigate issues of
critical connectivity. Others have investigated mechanisms of
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firing rate homeostasis, usually in the form of constraints
[2,3]. A modification of spike-timing-dependent plasticity
learning rules can also achieve activity homeostasis [50].
However, this model does not explicitly incorporate critical
homeostasis, and it is not clear that critical homeostasis
would arise as a natural consequence of the dynamics. There
are also models which are capable of self-organized critical-
ity based purely on local learning rules [51]. Such models are
attractive in that they do not need to suppose nonlocal learn-
ing rules. In contrast, we assume that each node must sense
the total input to that node, which is a nodal-wide property
and not a strictly local (i.e., synaptic) property. However, the
experimental finding of multiplicative synaptic scaling [12]
and of active and passive backpropagation of action poten-
tials into the dendritic tree [52-54] show that nonlocal
neuron-wide mechanisms do exist, and suggest that nodal-
wide mechanisms may also exist. We leave it to future ex-
periments to determine whether critical homeostasis really
involves only purely synaptic-level learning rules.

The precise magnitudes of the rate constants k;; are not
known, as experiments have not been framed in terms of
determining these rate constants. Of particular interest are
not simply the absolute magnitudes of these rate constants,
but their relative magnitudes, because stability and conver-
gence depends on the relative magnitudes and not so much
on the absolute magnitudes. We suggest that it may be inter-
esting to design experiments to look at these time scales, to
see if these time scales are constrained in the ways we have
described above, and also to see if a simple scaling algorithm
is found as in Egs. (4) and (5).

In terms of orders of magnitudes of time scales, the syn-
aptic scaling mechanism of Wierenga et al. [12] is a slow
process, with a time scale of hours to days. Since critical
homeostasis must occur on the same time scale as Hebbian
learning, in order that neither critical homeostasis nor Heb-
bian learning dominates the other, we must look elsewhere
for a fast biomolecular mechanism for critical homeostasis.
In addition to being fast, such a mechanism must also be
nonlocal, i.e., not restricted to the level of individual syn-
apses, because the input and branching ratios are nonlocal
properties requiring simultaneous knowledge of total input
and output weights across an entire node. Here we mention
three examples of candidate fast, nonlocal mechanisms: (a)
When homosynaptic LTP (or LTD) is induced in the interca-
lated neurons of the amygdala, compensatory heterosynaptic
depression (or facilitation) is observed such that the total
synaptic weight of a given neuron remains constant [55]. The
counterbalancing heterosynaptic response is suggestive of
the scaling mechanism of Egs. (4) and (5). This mechanism
depends on the release of intracellular calcium stores and has
a time scale of minutes. Similar heterosynaptic LTD has been
reviewed by Artola and Singer [56,57]. (b) The phenomenon
of backpropagation of action potentials into the dendritic
tree, as seen in certain neocortical and hippocampal neurons
[52-54], allows widely distributed numbers of synapses to
receive nearly simultaneous information about neuronal out-
put. This information is conjectured to play a role in LTP,
LTD, and STDP, but might conceivably also be used for
critical homeostasis. (¢) A third mechanism may involve the
interaction of principal output neurons with local interneu-
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rons. It may be that a certain subset of local interneurons can
sense both the total input into and total output out of a local
community of output neurons. This information might then
be used to modulate either the input or branching ratio of that
group of output neurons. In support of this possibility, block-
ing interneurons with bicuculline can produce a dramatic in-
crease in the branching ratio within minutes [70].

Which of these three mechanisms, if any, are related to
critical homeostasis remains to be seen. Nonetheless, that
these mechanisms are all fast and nonlocal suggests that an
appropriate mechanism for critical homeostasis is at least
biologically plausible. We reiterate that there are theoretical
reasons why critical homeostasis should exist in systems that
maintain capacity for continual learning, because neural sys-
tems that operate far from criticality are inefficient and un-
reliable. Thus, we hope to encourage future experiments to
determine which neural systems are capable of critical ho-
meostasis, how tightly critical homeostasis is maintained,
and what mechanisms underlie it.

Desirable improvements in our model include generaliza-
tion to include higher order multinodal interactions [e.g.,
terms of the form P(i,j,k;t) as discussed in the Methods
section], the inclusion of non-Markovian memory effects in
the pairwise connection strengths, incorporating heteroge-
neous neural subsystems, and including the effect of inhibi-
tory interactions. The inclusion of multinodal effects would
be important when simultaneous multinodal discharges are
frequent, as in a seizure, or in the case of cells that prefer-
entially activate after correlated input from two different cell
populations, for example, the cerebellar Purkinje cells
[58-60] and possibly the granule cells of the hippocampal
dentate gyrus [61].

By Markovian connectivity, we mean that P(i,;;1) is de-
fined as the conditional probability that firing of node j at
time ¢ causes firing of node i in the next time instant, but
there is no further effect at time steps beyond the immedi-
ately adjacent time step. Non-Markovian connectivity would
allow a node to remember from which other nodes it re-
ceived input during time steps beyond the immediately pre-
ceding time step. Such memory effects in the connectivity
would allow the formation of more complex spatiotemporal
patterns of activity.

To include multinodal interactions and non-Markovian
connectivity, we experimented with the following generali-
zations:

N
AGise+ 80 =1-[1-SGollT[1- 06,701, (8)
j=1

N

0(i.j;0) = G(i,jin)| 1+ N2 Glik:) |, 9)
k#j

o0

G(i,jit) = X Gyt P(i,jit—t')F(jst—1').  (10)
t'=0

Here G(i,j;t) represents the conditional probability that
node i fires at time 7 due to activity from node j at any prior
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FIG. 7. Non-Markovian weighting function G(#) as a function
of time. In this example, Gy(#) consists of a step function at short
times plus a Gaussian centered at longer times. The areas under the
step function and under the Gaussian are approximately equal.

time, summed over all prior times ¢’ with a non-Markovian
weighting factor Gy(z'). We choose G(t') to have the form
of a delta function at short times plus a Gaussian centered at
longer times (see Fig. 7). The delta function at short times
represents the Markovian component of the connectivity,
while the Gaussian at longer times represents non-Markovian
connectivity. The parameter A =0 controls the strength of
multinodal interactions. The function Q(i,j;f) is taken to
have a maximal value of one, so that it is reset to one if the
right-hand side of Eq. (9) ever exceeds one. The input and
branching ratios are then given by

N N "
nlist) = EP(i,j;t)<1+x2 G(i,k,r)) > Gt |
j=1 k#j | /=0 |
(11)
N N [ T
olist) = 2P(j,i;z)(1 +AD G(k,i,t)) > Gyl
j=1 k#j | /=0 i
(12)

We have not explored Eqs. (4)—(12) as systematically as Egs.
(1)=(7), but with A=0.5 and A=1, and 7,=6.25s and 7,
=120 ms, we find through computer simulations that the
same stability criteria as described above appear to be pre-
served.

The significance of Markovian vs non-Markovian connec-
tivity is that Markovian systems are not as good for the for-
mation of sequential memory, wherein specific temporal se-
quences of spatial patterns are to be learned. To see this,
consider what happens if exactly the same stimulus is fed
into a neural system with Markovian connectivity, at inter-
vals longer than the nodal refractory period. In this case,
every stimulus appears exactly the same to the neural sys-
tem, and the neural system has no way to know if it has just
seen the stimulus for the first time, the second time, or the
nth time. There is no sense of “history” in a system with
Markovian connectivity, no possibility of ‘“historical con-
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text.” Although such a system is capable of long-term
memory, it will respond to the same stimulus in the same
way, every time that stimulus is presented, regardless of what
may have happened in the meantime. In contrast, a system
with non-Markovian connectivity will see each succeeding
stimulus a little differently, as modified by recent history. To
consider a visuospatial example, an animal that has Markov-
ian connectivity may be capable of taking in a visual scene
and remembering it, as of a photographic still. An animal
that has non-Markovian connectivity, on the other hand, may
be capable of stringing multiple photographic stills together
to create a movie. Similarly, an animal with Markovian con-
nectivity may be trained to recognize the letters of the alpha-
bet, but being able to read and understand a novel requires
non-Markovian connectivity. We predict that animals that are
capable of historical context, and that can understand a
movie or a novel, have non-Markovian connectivity.

An additional feature of non-Markovian connectivity is
that one can imagine taking a given memorized temporal
sequence of spatial activation patterns, and adding a tail such
that the temporal sequence returns to the beginning, thus
creating a recurrent spatiotemporal loop. If this loop is acti-
vated and the brain cannot break out of it for an abnormally
long period of time, then such a loop may represent a sei-
zure. Thus, epileptogenesis may involve not just the creation
of a hyperexcitable state (the traditional conception) and the
existence of supercritical connectivity (as described earlier in
this section), but it may also require non-Markovian recur-
rent loops. If any of these three prerequisites for spontaneous
seizures can be disrupted, then epileptogenesis might be pre-
vented. It is interesting in this regard that animals such as
reptiles and insects are much less likely to develop epilepsy,
in their natural states, than presumably more intelligent ani-
mals such as humans and dogs. Non-Markovian connectivity,
if it exists, is both a gift and a curse.

The brains of even lower animals are quite complex sys-
tems consisting of many subsystems, each possibly with its
own target firing rate, Hebbian learning rate, and homeostatic
scaling constants. Our model is easily generalized to allow
the simulation of such heterogeneous systems simply by al-
lowing these parameters to vary among the different sub-
populations.

We have ignored inhibitory interactions in our model in
the interest of simplicity. In the neocortex, on the order of
70% of all neurons are excitatory pyramidal cells [62]. Fur-
thermore, most inhibitory cells are interneurons and have
shorter ranged projections than the excitatory cells. Thus,
one may regard the inhibitory interneurons in the neocortex
as being mostly involved in modifying local circuits. These
functions are likely to be highly complex [63—-69], including
the modulation of local excitability (the most obvious func-
tion), the timing and synchronization of firing of excitatory
cells, activity-dependent disinhibition, and possibly even
critical homeostasis as discussed above. We do not know the
upper and lower ranges of the length scales at which critical
homeostasis is active, and thus it is not clear whether ne-
glecting inhibitory interactions in our model is a serious
omission. Determining these length scales is crucial. If in-
hibitory interactions are indeed active at the nodal level of
description, then the next question would be whether inhibi-
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tory interactions obey an as yet unidentified, new constraint,
distinct from the homeostasis of activity and connectivity
considered here.
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APPENDIX

We were not able to find a general closed form expression
for a steady-state solution of Egs. (4) and (5). However, if we
make certain assumptions, then a steady-state solution can be
found. The assumptions are suggestive, but we do not know
if they are necessary conditions for a steady-state solution to
exist.

The assumptions we make are (a) that simultaneous mul-
tinodal activations are rare, (b) that these solutions are inde-
pendent of the initial condition, (c) that the steady-state av-
erage firing rate and input ratio are the same for every node,
and (d) that fluctuations in the zero-time time-correlation be-
tween the connection strength and activity are small. As-
sumption (a) is satisfied when the system is not persistently
supercritical and when ot << 7, where o is the time step and
7y is the target time interval between firings. Assumption (b)
states that the steady-state solutions are stable to perturba-
tions. Assumption (c) states that the system is homogeneous.
Assumption (d) states that it takes finite time for connection
strengths to be adjusted up or down. We will ignore the
distance-dependent cost factor kp. This factor is discussed
separately in the text. To begin, the dynamical homeostatic
equations can be written as follows:

gtso';z) =~ [y AfGD) + kA (IS0, (AD)

i) ==l MGs0) + kA0 0), (A2)

where Af(i;1)=f(i;t)—1 and An(i;r)=n(i;r)—1. The latter
equation is obtained by summing both sides of Eq. (5) over
all j. For later convenience, let us define a matrix K as fol-

lows:

k k

K= { 11 12 } .

ko ka»
Next, define the steady-state values of (f(i;>))=f,
(n(i;°))y=m and (S(i;*))=S,, where {---) denotes a time
average over a time much longer than 7,. These steady-state
values must be the same for each node because the system is

homogeneous. For later convenience, define 8f(i;r)=f(i;r)
—fo, On(i;0)=n(i;1)— 1y, and 8S(i;¢)=S(i;1)—S,. Recall that

(A3)
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N
AGist+ 00 =1=[1=8G)1[1 = PG.j;0FG;0].
j=1

(Ad)

When simultaneous multinodal activations are rare, as we
have assumed in assumption (a), then A(i;z+ ) can be ex-
panded to lowest orders in S(i;¢) and F(j;z) as follows:

N

A(ist+ 81 = S(is0) + > P(i,j:0)F(js1).
j=1

(AS)

Note that Eq. (A5) represents a recursion relationship, which
generates a trajectory for the vector A(¢). The firing function
F(i;r) is essentially a digitized representation of A(i;z). The
parameters that control the trajectory for A(z) are the vector
S(1), the matrix P(¢), and the initial values for F(i;0). Since
we are only interested in stable steady-state solutions that do
not depend on initial conditions, we will regard the trajectory
of A(r) as being dependent only on S(7) and P(z). The varia-
tion of A(i,r+6r), as S(i;r) and P(i,j;t) are varied, is then
given by
N
SA(ist+ 8t) = 8S(is0) + 2, SP(i,j:1)F(j;1).
j=1
Note that (F(i;1))=(A(i;1)), and that f(i;1)=(F(i;t)), 70/ &,
where (- -+), denotes a time average over a time equal to 7.
Applying assumption (d) above, we have

(A6)

(OP(i,j;)F(jst)) = (OP(i,j ;) (F(j;1)). (A7)
Combining Egs. (A6) and (A7) we then have
(Sf(i50)) = (70/ t)(8S(i51)) + fol On(i;1)). (A8)

Taking the time derivative of both sides in Eq. (A8), com-
bining that equation with Egs. (A1) and (A2), and expanding

PHYSICAL REVIEW E 76, 041909 (2007)
to lowest order in {(8S(i;1))/S, and (5n(i;1))/ 5y, we have

(G50 = By (1~ fo) + Biall = ) = Bu(o7(is0)

= B (onlist)), (A9)

o300y = B(1 = o) + Bual1 = ) = B (970650

- By (i3 1)), (A10)
where the matrix B is defined as
By =k11So(7/0t) + karfomos
By =k12S0(70/ 1) + kyof oo,
By = ky 70,
By =kymp. (A11)

A little manipulation then shows that

[<5f(i;t)> ] . [ 1-f } R BI){ 3iz0) + fo—1 ]
Sz | L1-m P Sn(iz0) + =11

(A12)

The steady state corresponds to (8f(i;2))=0 and {(57(i;1))
~(. Equation (A12) thus shows that a stable steady state
exists only if both eigenvalues of B are positive and if f
=ny=1.Itis a Me matter to show that the eigenvalues of
B are N=by=\bj—d, where by=(B},+B,,)/2 and d=det(B)
=Sy(79/ t)  det(K). Therefore, under assumptions (a)—(d)
above, the existence of steady-state solutions requires f
="o= 1, S0>0, and k11k22>k12k21.
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